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Studies in Electronegativity

I. An Overlap Corrected Electronegativity Equalization Method

BIJORN VOIGT and JENS PEDER DAHL*

Department of Physical Chemistry, H.C. Qrsted Institute, University of Copenhagen,
DK-2100 Copenhagen ), Denmark

The possibilities for preserving the principle of electronegativity
equalization are analysed within a localized molecular orbital scheme,
using a set of approximations centred around the Mulliken approxima-
tion. The necessity of including molecular terms in the definition of
the orbital electronegativity is demonstrated. However, even with
this modification the principle cannot be straightforwardly maintained,
due to corrections from overlap distributions taking the form of
overlap electronegativities.

1. INTRODUCTION

It has been known for some time that in order to obtain reasonable results
from the principle of electronegativity equalization! (EE), it is necessary
to express the electronegativity of an orbital on a polyvalent atom as a func-
tion of the ionic characters of all bonds involving the atom.2-¢ This, in fact,
constitutes the first step towards the use of effective electronegativities of
orbitals in situ. However, a complete definition of the concept requires inclu-
sion of additional molecular terms. Some of these have already been considered
by various authors,>7 but the theories developed so far have not been able to
account for all molecular corrections in a satisfactory way.

In the present paper we analyse a localized molecular orbital scheme, in
which the molecular energy is expanded as a power series in the polarities of
the bonds. The key approximations used in the theory are the Mulliken ap-
proximation ® and generalizations thereof.?:10

Within this set of well-defined approximations it is demonstrated that the
principle of EE can be preserved in a straightforward way only in the crudest
description, in which quadratic and higher order terms in the bond polarities
are neglected in the energy expression. Beyond this point non-trivial correc-
tions due to overlap distributions appear.

Theories similar in nature to the one presented here have been called Dif-
ferential Ionization Energy methods.’,? It is, however, our feeling that the
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term Overlap Corrected Electronegativity Equalization (OCEE) is a more
appropriate one, considering the conceptual foundation of the theory.

Some attention has recently been devoted to the problem of left-right
correlation within a two-electron bond.!3,? 1t is shown here that attempts to
include this effect weaken the electronegativity concept.

2. BASIC THEORY AND APPROXIMATIONS

We consider the ground state of a given molecule and approximate the
electronic wavefunction, ®, by a single Slater determinant, built from doubly
occupied, localized molecular orbitals (LMO’s; y). Only valence electrons are
treated explicitly. For the interactions with inner shell electrons and nuclei
we adopt the Goeppert-Mayer-Sklar-approximation !* by introducing a core
potential U.

Thus for a molecule with 2N valence electrons and M nuclei we get the
wavefunction and the electronic Hamiltonian (a.u.):

+ -+ - 4=
D = [p1p19a¥a YN (1)
§ %ﬁ(ﬂ%%l (2)
H= i —
i=‘—1 1=i j>i7‘ij
A A M A
h(i) =T, + Z U,G), Ty= -} p (3)
A=1

The LMO’s representing the bonds and lone pairs in the molecule are
constructed from normalized atomic hybrid orbitals (AHO’s; ¢). Bond LMO’s
are made up of two AHO’s and contain one variational parameter each after
the normalization. As parameter we choose the bond polarity y, a real quantity
defined by the following form of the LMO:

Yi=Cl(1 + )b + (1 = y)dia] (4)

G Eﬁ[l + 8+ (1 = 8227 = C7[1 — §q,(1 = Sy)»? + O(y)] (5)
S; = Re {(¢;1l¢;n> =Re [d;;*d;, dv (6)

Co= (2 +28)7, q,=2C7P = (1 +S)~ (7)

As lone pair LMO’s we use single AHO’s, these orbitals being completely
determined by the hybridization scheme. It is easily seen that the form (4)
can be employed even for lone pairs provided that we put ¢, = (= w;).
We need therefore not make any distinction between the two types of LMO’s
in the following.

The LMO’s are assumed to be mutually orthogonal. This approximation is
permissible, since hybridization maintains the orthogonality of AHO’s on
the same center. The overlaps neglected are thus either between orbitals two
bond distances or more apart, or between orbitals on neighbouring atoms but
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pointing away from each other.
From (1) and (2) we get the total electronic energy

E=2 Z u+%Ju)+ZZ (8)

i=1 i=1 j#i

with

H;, = (pyfhly =fw,*flw, dz 9)
Ji = [vwlviys] = [fv* (1w )— p;*(2)y;(2) dzydr, (10}
Ki] = ['l’i‘l’jl'/’j'ﬂi] = ff’l’i*(l)'/’j(l);; ’Pj*(Q)'Pi(2) dr,d7, (11)
The integrals in (9)—(11) are over LMO’s. For AHO’s we use the following

notation:
k)= [, dildb,]= [U[kK] (12)
K(l’k)E [$idulded]= [Tk[KI] (13)
The symbols [1l|..] and [.I|l.] to be used later on denote operators with matrix

elements
{l[ll]..]|¢p > = [ll]km] (14)
{ellU1.]|¢> = [kljlm] (15)

Defining the bond energy
N

E=2[H; + 3J; + Z (2J;; — Ky)) (16)

j#i

allow us to write the total energy in the form

N N N
E=>B-> »@-K) (17)

i=1 i=1 j=i
It is readily shown that
N N

SE_DLS S w,-x)] a

i=1

and thus we obtain the following condition for E to be stationary with respect
to the bond polarities:

0E 0B,
—<=0,k=1, 2,.., N 19
O I 9
or, by inserting (16) and dividing by 2q,:
N

1 [0H,, 0d < O (?Kk.):l
—— +F =+ 28—~ M)l =0 20
al ot % 2.5~ 20)

Acta Chem. Scand. 26 (1972) No. 7



2926 VOIGT AND DAHL

In order to simplify (20) we introduce the Mulliken approximation 8

i *(1)dia(1) + io*(1) dir(1) 22 Sl ¥(1)in (1) + Big*(1)hia(1)] (21)

in J K and Jy;, and a generalized version of (21) first proposed by Rueden-

berg ?
$i1*(1)hi2(2) + o™ (1)6h11(2) 22 Si[ i1 *(1)11(2) + o™ (1)h10(2)] (22)

in K,;. The latter approximation does not have a numerical justification like
the one that has been established for the Mulliken approximation.1¢ However,
since Jy; is an order of magnitude greater than K,;, and the two approxima-
tions are employed simultaneously, the inaccuracy in the evaluation of 2J,;—
K, is probably still dominated by errors stemming from the use of (21).

Using (4) — (7) we obtain directly (m=1 or 2):

ql 0(2, {w*(Dp(m)} = ¢y *(1) iy (m) — b *(1)Pyo(m)
+ 28, Q. 7k { b ¥ (1) da(m) + dip*(1)dya(m) — S—lk[¢k1*(l)¢k2(m) + b2 (1), (m)]}
= 3(1 = 8) Q[ *(1)dia(m) — dio™(1)dia(m)] + O(3,3) (23)

and with (21) and (22) in the terms independent of and proportional with the
square of y;:

W1*(1)w:(m) = 1[¢11 ¢ l(m) + ¢12 )¢12( (24)
+ qinildin (D) (m) — ¢*(1)dp(m)] + 0(3’13)

It is seen that the use of (21) and (22) would eliminate the first order term
in (23). However, whereas this is acceptable in the J- and K- 1ntegra,ls (precisely
the justification for applying the approximations in (24) ) it is certainly not
so in H,, because of the presence of the operator T in h. Since we cannot do
away with the term completely, we prefer to keep it everywhere as it stands.

We notice from (24) that the assumption of orthogonality of the LMO’s
together with (21) and (22) allow us to approximate the charge distribution
in the molecule by one arising from a collection of fractionally charged atoms
in suitable valence states. The fact that (24) is applicable to both Coulomb
and exchange interactions implies that the charges left in the hybrids must
be regarded as made up of equal amounts from the two bonding electrons
with opposed spins.!?

3. ELECTRONEGATIVITY EQUALIZATION

The preceding section contains the general framework for the discussions
to follow. The remaining part of the paper will be concerned with the explicit
evaluation of (20) and the interpretation of this equation in terms of Electro-
negativity Equalization (EE). This is most conveniently done in steps, suc-
cessively including energy terms of increasing order in the bond polarities.

3.1. First order theory. The first order theory is of course of limited practical
use since (20) to this order does not involve the bond polarities. This simple
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case, however, will provide us with some useful definitions appropriate to
the point of reference, i.e. the situation where all bonds are homopolar.

In the following it is assumed that ¢, and ¢,, are centred on atoms A
and B, respectively. Upon insertion of the zeroth order terms from (23) and
(24) into (20) this equation now reduces to

M M
Xy(k1) + > PEc(kl) = Xyy(k2) + > PE(k2) (25)
C#A C#B
PE. denotes the penetration energy of the orbital in question into the neutral
atom C. X, is the Mulliken electronegativity 18 defined in terms of the ioniza-
tion potential I, and the electron affinity A, for the orbital in the
appropriate valence state V of the atom. Using the definition

Bo=Uc+ Y {[UI.] - $LULD (26)
I

where the summation runs over all AHO’s on C counting lone pair AHO’s
twice, we have

PE (k1) = — ($[ecldr? (27)
Xy(l1) = 3 {Ty(k1) + Ay(k1)} = —<{galT + &g (28)
and corresponding expressions for ¢,,.
The term
(al [K1KLL.] — BLRUKL gy = k1K1K k1] (29)

entering the definition (28) of the Mulliken electronegativity, expresses the
fact that a charge element transferred to ¢,, through the bond can interact
with half the charge already present, i.e. the portion due to the other electron.

Introduction of left-right correlation between the two electrons in the
bond can be considered equivalent to allowing the charges in the orbitals
forming the bond to be made up of different amounts from the bonding
electrons. This explicit correlation effect is clearly incompatible with the
general features of simple MO-theory and cannot be included via a consistent
approximation scheme in a theory of this nature. Furthermore, if the effect
is introduced by some (necessarily inconsistent) means, it will require addi-
tional assumption to maintain the concept of electronegativity in the Mulliken
sense. The term (29), which is part of the definition, can namely only be
justified if the test charge element added to ¢,, contains equal amounts from
the two electrons. It follows, as an immediate consequence of the preceding
remark, that the electronegativity concept cannot be derived from the quantum
mechanics of isolated atoms.%,14

Eqn. (25) is the EE-equation for the trivial case of perfect homopolarity
of all bonds. We take this as the basis for the definition of the generalized
homopolar electronegativity, X;°, of the orbital in the molecular environ-
ments. However, arguments similar to the one given in connection with (29)
force us to remove part of the interaction between ¢, and ¢, in order to
avoid self-interaction of the electron. We thus write
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M
X(kl) =Xun(kl) + » PE (k1) + $[I(k1k2) - K(kLk2)]  (30)
C#A
and similarly for ¢,,.

Introducing the homopolar Fock-operator }° (actually derived from the
valence state atoms) and the self-interaction correction operator p,

M
F=T P 31
+CZ=1 (31)
e = HIk1k1]..] + [k2k2|..] — [k1k1.] — [k2/k2.]} (32)
<¢k1|l§k|¢k1> = <¢k2‘3k|¢k2> = %[J(kl,k2) - K(k1>k2)] (33)
<¢k1|l§kl¢k2> =0 (34)

allow us to write (30) in the form

X (k1) = — (b lF° — hild> (35)

X°(k2) is given as the negative expectation value of the same operator with
respect to d,,.

3.2. Second order theory. In order to obtain equations from (20) which can
be solved for the bond polarities, and which can therefore be used in calcula-
tions of these important quantities, we have to evaluate the energy to at least
2. order in the y’s.

If this is done, while the LMO’s are normalized only to 1. order, i.e. when
the 1. order term in (23) is neglected, we get from (20):

N
X (k1) — Z2qj}',~{[J(k1,J'1) — $K(k1,j1)] — [J(k1,j2) — $K(k1,j2)]}
j#k

— Q¥ [J (kL k1) — J(k1,k2)] = X°(k2) — qun [I(k2, k1) — (J(k2,k2)]

N
— > 2ap{[I(k2,j1) — $K(k2,j1)] - [T(k2,j2) — K (k2,j2)]} (36)

j#k

The y-dependent (inductive) terms in (36) are recognized as being correc-
tions to the Xy- and PE-terms stemming from the deviations from homo-
polarity of the bonds. The quantity 2q;y; is the charge transferred from

¢j2 to ¢11- )
Defining the general Fock-operator F:

F(y) = F° + 4F(y) (37)

N
AF(y) = Z-‘qu)’j{([jljll--] = 3[i1i1.]) — ([i2i2]..] — 3[.32152.1)} (38)
j=1

enables us to rewrite (36)
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Xo(kl) = — (Bl T — (1 = 2q,%) Bl )
= — (el F = (1 + 2qu0) il deod = X (k2) (39)

The coefficient of B, in (39) is the charge in the partner orbital in the bond..
This term will thus remove the self-interaction connected with that part of
the charge distribution.

The reason for including the inconsistent 2. order treatment giving rise to
(39) is that this seems to be the best we can do if we want (20) to come out
as an EE-equation. The complete 2. order theory, including the 1. order term
in (23), gives the equation

Xo(kl) — X, (k2) + 20 S (X (k1) + X(k2) — 2X°(kS)} =0 (40)

where we have used (39) and (35) plus a definition of the homopolar overlap
electronegativity analogous to (35):

X(kS) = — Re ($ualF° — Bildd /Sy = — Re (bl F°|duad[S, (41)

Eqn. (40) can be cast into a form similar to (39) if we are willing to accept
another generalization of the Mulliken approximation (21), namely the Wolfs-

berg-Helmholz approximation 1° for e
Re (1| F°| dusd NG {<¢k1lF°|¢k1> + (Bal Foldhad) (42)

G is here an empirical parameter greater than 1. In that case (40) takes the
form

- <¢k1{ﬁ - (- 2qkyk)ﬁk - 2kak7k[ﬁk + (G - l)ﬁ‘o]]¢k1> =
= - <¢k2|i? — (1 +2qkyk)ﬁk + 2QkSkJ’k[Bk + (G - I)Fo]]¢k2> (43)

It may be argued that the Wolfsberg-Helmholz approximation ought to

be applied to ¥°— B, rather than to F; so that the equation would reduce to
- (39) for G=1. However, the Wolfsberg-Helmholz approximation does not in
general, as the Mulliken approximation, conserve the total charge involved
in the interactions. Since the justification for the approximation therefore is
purely numerical, and no direct physical interpretation can be given for the

resulting terms, it was found rational to leave out the diagonal operator f,
(see eqn. 34). From the computational point of view the two approaches give
very similar results although of course different G-values. v

3.3. Third order theory. Preliminary calculations seem to indicate that most
molecules in which the bonding is commonly considered as covalent, are
adequately described by the 2. order theory. Only in comparatively few cases
will bonds of sufficient polarity be present as to warrant inclusion of terms
in the energy involving the bond polarities to 3. order.

With the energy evaluated to this order eqn. (20) becomes a second order
equation. It will, however, still be relatively simple since the only further
term in (22) and (23) which contributes is the 2. order term in (23). By analogy
to the derivation of (25) it is seen, that this term will give an additional
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= 3(1 - S)qunl[X (k1) — X°(k2)] (44)

on the left-hand side of (40). The remaining 2. order terms arising from the
derivatives of Jy, Jy;, and K, can be eliminated by applying (21) and (22)
in (23). Thus writing out (43) with inclusion of (44) and collecting all 1. order
terms [see (37), (38), and (39)] on one side of the equation we have

207 {8 (G — DX (k1) + X,°(k2)] — S G[J(k1,k2) — K(k1,k2)]
N

+ HI(kLk1) + J(k2,k2)] - J(kLk2)} + > 2q7A,, (45)
j#k
=[1 - 3(1 = San’] [Xe°(kl) — X°(k2)]
where

Ay =J(k1,j1) — J(k1,j2) — J(k2,j1) + J(k2,j2)
— K (k1,j1) — K(k1,j2) — K(k2,j1) + K(k2,j2)] (46)

3.4. Further remarks. In order to make the connection between the three
orders treated, let us consider the charge distribution in the k’th bond

21y l* = Qui|dial® + Que| Pral® + Qus(Pradua™ + dra*edua)/2S, (47)
Qu = qi {1 + 27, + 28,9, — 2(1 —8)qe®} + O(n (48)
Qe = a{l — 27 + 28,q,»2 + 2(1 = Sp)aer®} + O(xY) (49)
Qus = 29,8, {1 — 29,73 + O(x?) (50)

Eqn. (19) can be written

oE IE \ 0Qu _ aE)anz 3 0E \ 0Q,
T Oy (_ anl) 07, + ( 0Quz) 0y, T ( ans> 7,
0Qu1 ka 51
(k) 3, - + X (k2) ay ® + X (KkS) By, =0 (51)

where we have adopted the now generally accepted definition of the electro-
negativity 14 as being the derivative of the energy with respect to the charge
(properly signed). Eqns. (25), (40), and (45) are seen to be (51) calculated to
various orders and as such telling us what to include in the X’

The bond term added in going from (39) to (40) orlglnates from the 2
order contributions to (48)— (50), which describes a migration of charge from
the overlap distribution to the bonding orbitals. Since the overlap is the main
factor responsible for the bonding, this term represents the inherent inertia
towards weakening of the bond. No equalizing effect on the electronegativities
can be attributed to the bond term, and (40) and (45) can consequently not
be regarded as EE-equations in a simple sense.

In attempts to establish the validity of the principle of EE within LMO-
theories Baird, Sichel and Whitehead 13 included resonance terms similar to
our overlap electronegativities in their orbital electronegativity definition.
It is, however, difficult to visualize these quantities as potentials for charges
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in any of the two orbitals involved. Not even the Wolfsberg-Helmholz ap-
proximation will solve this problem, since this, as previously mentioned, is no
more than a convenient but unphysical way out of computational difficulties.

4. CONCLUSION

The principle of electronegativity equalization constitutes an intuitively

appealing and, as shown above, theoretically justifiable framework for molec-
ular orbital calculations on molecules reasonably well described by localized
orbitals. It is, however, absolutely necessary that molecular corrections be
taken into account in applications of the principle. Preliminary calculations
demonstrate very clearly that both neutral penetration energies and terms
originating from changes in overlap distributions are extremely important
corrections without which the theory would be seriously unbalanced.

In the near future a full report on calculations according to the present

theory will be published.
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